Understanding shape entropy through local dense packing.
نویسندگان
چکیده
Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa.
منابع مشابه
Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres
Particle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, st...
متن کاملQuasicrystals and the Wull{shape
Innnite sphere packings give information about the structure but not about the shape of large dense sphere packings. For periodic sphere packings a new method was introduced in W2], W3], S] and BB], which gave a direct relation between dense periodic sphere packings and the Wull{shape, which describes the shape of ideal crystals. In this paper we show for the classical Penrose tiling that dense...
متن کاملChapter 5 Global Fano Method
In this chapter, we extend the techniques of Chapter 2.4 on Fano’s method (the local Fano method) to a more global construction. In particular, we show that, rather than constructing a local packing, choosing a scaling δ > 0, and then optimizing over this δ, it is actually, in many cases, possible to prove lower bounds on minimax error directly using packing and covering numbers (metric entropy...
متن کاملJamming III: Characterizing randomness via the entropy of jammed matter
The nature of randomness in disordered packings of frictional and frictionless spheres is investigated using theory and simulations of identical spherical grains. The entropy of the packings is defined through the force and volume ensemble of jammed matter and this is shown to be difficult to calculate analytically. A mesoscopic ensemble of isostatic states is then utilized in an effort to pred...
متن کاملFluctuations within folded proteins: implications for thermodynamic and allosteric regulation.
Folded protein structures are both stable and dynamic. Historically, our clearest window into these structures came from X-ray crystallography, which generally provided a static image of each protein's singular "folded state", highlighting its stability. Deviations away from that crystallographic structure were difficult to quantify, and as a result, their potential functional consequences were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 45 شماره
صفحات -
تاریخ انتشار 2014